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A METHOD OF ESTIMATING THE DOMAIN OF CONTROLLABILITY 
IN NON-LINEAR SYSTEMS* 

A.P. BLINOV 

An estimate of the domain of controllability is given for a class of non- 
linear control systems. The domain is the region of phase space from every 
point of which the system can be taken to any other point by means of an 
admissible control. 

1. Consider the differential equations of perturbed motion of a control system (written 
in vector notation) 

5’ = @ (x, u), CJ E C' (R” x Qo), Q. c_ R” (1.1) 

Here u is the control vector acting from the bounding set QcQo for which the vector 
u-0 is an internal point and R”,R”’ are real n- and m-dimensional spaces respectively 

(m < n). 
Following /l/ we shall define the domain of zero controllability as the set of initial 

points x0 ERn from which system (1.1) can be brought to the point z = 0 by means of the 
bounded measurable controls u(f)E Q defined in some finite time interval. 

We know /l/ that if a positive definite Lyapunov function V(x)and an m-dimensional vector 
function z.&(z) exists for the control system in R” of class Cl, such that 

n . 
lim V(x)=oo; 

I+= c :, ~cD,i(x,..(x))<o, x#O 
i-1 ' 

@(O,O) = 0, ( ) . ( is the length of the vector) and the conditionof local controllability 

rank IB, AB, . . . . A-B1 = n, 0 E Q, A = ‘Dz (0, 0) (1.2) 
B = 0, (0, 0) 

holds, then the domain of zero controllability for system (1.1) is identical with R”. 
Let us consider the case inwhich a constructive estimate can be given for the domain of 

zero controllability. 
Let a Lyapunov function V(x) be known for system (1.1) without control, positive definite 

in the region 52,C R”, 0~ &the time derivative of which 

by virtue of (1.1) (with U 3 O), is a non-positive function in 9,. 
We take a function U(U)E C1(QO), positive definite in UEQ,,, e.g. a positive definite 

quadratic form. We write the expression 

” 3v Fr(x,u)s~ 
%=I 

F I@i Cx* u, - @i (X*0)] + u (U) .(1.3) 

are separate it into m components. 

Fz(5111)=~~1Fk(.r,U) 
_. 

Fk (2, U) G 2% [@j (2, U) - @j (~9 0)] + lJ, (u) 
j-1 ’ 

U,(u)>O; $IUx(u)=U(u); k=l,...,m; nr+...+n,=n 

Let us separate from the functions Fh(z,u) the cofactors of the form c(u), provided 
that they exist, i.e. let us write Fk (x, u) in the form Fk (5, u) = Fk* (z, u) fl (u) and consider 
the system of equations 

fl(x, u)=O, k- 1,. . .,m (1.4) 

The vector function F* (x,u) is defined and continuously.-differentiable in the region 
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R” X Q, and F* (0,O) = 0, 
We shall assume that the functional determinant li3Fk* (r,u)/i3uj 1 is mr.-zem at *very 

point (z,U) of the open set SC R" X Q, containing the point z = 0, u = 0. 
Let R,,R, be two positive numbers such that when Iz I < R,, /u I-<R,, the point (J,zO 

belongs to the open set S and the following inequality holds for it: 

(1.5) 

Here a is any number from the interval (O,l), &(z,u) is the coordinate of the vector 
function g.(z, u) 

g (2, u) = U - PF" (z, U) 11.61 

and B is a matrix of the coefficients btj ~LV,*(O,O)lc3u,. 
Then it follows from the theorem on the implicit function /2/ that a continuous and 

unique sol.ution u = u,(z), u, (0) = 0 of the equation F* (z,U)= 0 exists in the open set Q, 
defined by the inequality 15 /<R,, < R, and 

I g @, 0) - g (0, 0) I c (1 - 4 & (1.7) 

(Under the assumption used a number RW must exist and can be computed.) 
Some arbitrariness in choosing the function U(u)and in splitting the expression Fz(z,u) 

into its terms can be utilized for determining the control U,(z) in the easiest possible way. 
For example, if the functions mi (J&U) can be written in thq form 

then, assuming that 
m 

U(U)=SF, akjukuj 
= 

we obtain 

Therefore terms of the type Fh* (2,~) and equations (1.4) are obtained here quite naturally 

Thus in the case in question, the problem of determining the control reduces to that of 
solving a system of linear equations. 

From the construction of the control U = u,(r) it is clear that it will stabilize the 
unperturbed motion z = 0 of the system (1.11 , provided that the manifold lclc R" defined 
by the expression I-,,' (z) - If (u, (I)) = 0 does not, according to the Barbashin-Krasovskiitheorem, 
contain complete trajectories of system (1.1). 

Let the limiting set Q depend on I and be defined by the expression 

Q (x) =- ( I ZJf / < UO~ (r)CC (R"), 0~ U* = COPSE, Q Uoj (*)< (f-9) 
u** = eoiist, j = 1, . . ., m) 

If Q,\ Q# 0, then we define the controls thus 

3 = uj” (4 = 1 uOj ($1 sign uc~ Cx)r I ucj (x) I > uOj Cz) 
u,j (x), 1 u,j (x) I< uoj (5); ((U,*, . . . , U,,) = UC} 

(1.10) 

Since the controls u,"(~) are continuous, it follows that the derivative r, by virtue of 
the system (l.l), will be defined in a, when u, =i U,O (2). Let every one of the sums 

kr=i,...,m 

be able to change its sign for fixed sE R, only when all controls entering Tr change their 

signs simultaneously. Then the derivative v', by virtue of (1.11, will vanish when Ul = Ut"(z) 
only when x E'M. 

Consequently, system (1.1) can be stabilised by bounded controls belonging to the set Q(x). 
I.e. the region 9, lies in the domain of zero controllability of (1.1). Clearly, in the case 
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(1.8) R, = Q,. 
Note that the use of the well-known Lyapunov function to construct the optimal stabilizing 

controls for system (1.1) was suggested earlier in /3, 4/ for the case when the functions 
ai (2,~) are polynomials of first and second degree with respect to the controls. 

In some cases the proof of stabilizability of the unperturbed motions of system (1.1) in 
the region Q, can be simplified by introducing a new control vector v connected with the 
initial control vector u by the relation v = V(U), single-valued and continuous in the neigh- 
bourhoods I&. Qr of the points u = 0, v = 0, under which the right-hand side of the system 
becomes simpler, e.g. becomes linear with respect to the new controls, i.e. 

@'i (5* u(u)) =@‘oi Cz) + ,sl @ij lx) vj* i=l,...,n (1.11) 

We shall illustrate this by an example. The problem of optimal stabilization of the 
stationary motion of a satellite about its centre of mass was studied in /5/. The satellite 
was situated at the triangular libration point of the system of two bodies, and the stabiliza- 
tion was carried out by varying the moments of inertia of the satellite. The right-hand side 
of the equations of perturbed motion of such a control system has the form (1.11). 

The stationary motion of the satellite, stable in the region of librational motion R, is 
stabiliized by the controls uj(/= 1,2,3) with or without constraints of the type (1.9). The 
controls ~'~in this problem are functions of the displacements y of the centres of mass of the 
displaced massive bars, and have the'form 

where 

and A,,Bo.Co. i.,,?.,, h,, m,, rnp, m, are constant positive parameters of the problem (B. > C, >A,). 

To estimate the regions Q,and Q,,we shall use the expressions (1.5), (1.6), (1.7) in which 
the functions P (5, u), g (z, U) are replaced by the corresponding functions F (u, u), g (c, u) with 
coordinates 

Fj(v. u) = cj - uj, gj(c.u) = uj- tBj.F (v, IL), 

gj (0.0) = 0. gjhO) = i Bjkcr. j=1v2,3 
k=l 

Here Bj = (Bjl, B,,, Bjs). BJ~ are elements of the matrix B-1, <., .) is the scalar product of 
the vectors and EJ are the corresponding right-hand sides of expressions (1.12). 

Since the derivatives agk(v,u)/aul are smooth, depend on the function u only and vanish 
when u = 0, after passing from the inequalities of the type (1.5) to equalities (at fixed a), 
we obtain equations of the surfaces bounding the region QU. Apart from these surfaces, the 
region Q,is also bounded by the surface representing the boundaries of the domain of defini- 
tion of FI (UP v) and described by the equations w,(u) = U,W~(U)= 0. Therefore the quantity R, 
represents here the minimum distance separating the point u=O from these surfaces. Inequal- 
ities (1.7) have the form 

15 Bjpkl<U-NRu~ i=l.2,3 
k=l 

Thus we find that the region Q,is bounded by the surfaces 

i Bjkuk = f (1 -a) R,, i=1,2,3’ 
k=l 

If Ron is the minimum distance from these surfaces to the point v= 0,then satisfying the 
condition u** < =19Roo guarantees the solution of the problem of stabilizing the stationary 
motion of the satellite by means of controls u,,up, ~1% with constraints of the type (1.9). 

Returning now to the general case , we shall assume that the estimate of the region Q, 
for the control system (1.1) is known. 

If condition (1.2) also holds for such a system, then according to Theorem 1 of /l/ its 
domain of zero controllability is open in R". Consequently, any point of the region 52, can be 
transported by an admissible control, i.e. a measurable function u(t)= Q(z), to the origin 
of coordinates over a finite period of time. 

Note the following properties of the control system (l.l), (1.2), (1.9). The set Q(z) is 
closed, bounded, and by virtue of the continuity of the bounding functions %J tz) semicontinu- 
ous from above with respect to the inclusion (in z), i.e. the following assertion holds: 
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(VX E R”) (v& > 0) (96 = 6 (E, X) > 0) (VI’, 1 X - Z’ 1 < 6) : Q (X’) -_ Qt (Z) 

Here Qe(.r)- E denotes the neighbourhood of the set Q(z). 

When the vector u traverses the set Q(I), the vector function cD(x.u) traverses the set 

R(s) which is also semicontinuous from above with respect to the inclusion. 
Moreover, in the case of a linear dependence of @ (I, u) on u the set R (5) is convex (for 

any zER*). 
In addition to the properties listed above for the system (l.l), let the set R (J) be 

convex and let the following inequality hold /6/: 

(5, Q, (z, u)> < c ( 15 I p + I), c = const, u E Q (4 
Then the condition of Theorem 1 of /6/ will hold for every point XER". The theorem 

implies that for every point of the region 52, an admissible control exists which transfers 
this point to the origin of coordinates in the shortest possible time. 

2. Let us now consider the problem of estimating the region of zero controllability for 

an autonomous control system written in theform of the Lagrange equations 

d dT dT 
z-dq,.-dqi=-K- 

j-1 
(2.1) 

without assuming that the stationary motion pi = 0, pi' = 0, (i = 1, . . ., n) is stable when uj c 

0 (i = 1, . . . m). 
Let the potential energy of the system (2.1) have a maximum equal to zero n (0) = 0, when 

Q = 0, with bounding functions independent of the generalized velocities, i.e. when we have 
in conditions (1.9) uoj = z&), (Q). 

We shall write the controls in the form 

uj = uj + wjT ( Uj I< ~hU0j (Q)S p E (0, 1) (3.3) 

~Fij(q)wj=(l+p)~. i=l,...,n 

j-1 

and assume that equations (2.2) are compatible and have the solutions WI = wj* (q), wj* (0) = 0 

in the region Gp containing the point q=o of the configurational space G. We define 

the surfaces Y/+, v1- in the region Gp by the equations *(I - p)uOj (q) = wj* (q) respectively. 

(If the latter equations have no solutions for some values of j, there are no corresponding 

surfaces). 
The region G, containing the point y = 0 and bounded by the surfaces yr+,yj- and the 

boundary of GF, is obviously non-empty for sufficiently small p. A value p = IL* exists on 

the bounded set PLE (O,I), for which the region Gp will contain the closed surface of 

constant level of the function (-p*n) defined by the equation -p*l-I = rI*, FI* = const> 0, 
farthest from the origin of coordinates. 

Let us write the equations corresponding to the control system (2.1)) after passing to 

the new controls 

(2.3) 

We find that for any initial perturbations belonging to the region 9* of phase space 

Rm bounded by the surface of integral manifold of the system '(2.3), when UZO and 

H ((I, q') = T (q, @) - PHI (q) = n* 

the unperturbed motion q = 0, p = 0 is stable and can be stabilized by a continuous bounded 

control. Consequently, under the additional assumptions given in Sect.1, the region $2' can 

serve as an estimate for the region of zero controllability. 

Note that the addition to the system (2.1) of the non-potential forces which vanish at 

the origin of coordinates, does not cause any difficulties in principle in determining the 

region Q*. 
The homogeneous walk of a plane non-linear model of a walking device along a horizontal 

plane, is described /7/ by a system of five differential equations of the form (2.3). The 
problem of bringing the device to the upper unstable equilibrium positionin the least time 

may be of interest. Since the dimension of the control vector is equal here to the number of 

equations, it follows that the system of the type (2.2) is consistent. 
In the linear approximation the equations of motion of a walking device near its upper 

position of unstable equilibrium have the form 

5 6 

2 a,lqj” = 2 bijqj + u,. blj = bji, i, i = I,. ., 5 

j=-I j-1 

(2.4) 

Since the dimensions of the control vector is equal to the number of equations, the 
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conditions of controllability of system (2.4) are satisfied. (In the case of a scalar control 
the conditions of controllability of the system of the form (2.4) were obtained in /8/). Other 
conditions for the region R* (Sect.11 to exist are also satisfied. 

3. Let us now consider the problem of estimating the region of total controllability 
of system (l.l), i.e. of a set such that a phase point can be taken from any point of the set, 
by means of an admissible control, to any point of this set in a finite time. 

Let D (t) be a set of points SE R" intowhich thephase pointcanbetaken from its initial 
position 2=0 at t =O, using an admissible control, in a time t>O, i.e. let D (1) be 
the region of zero attainability /l/. 

It was shown in /l/ that, for the linear control systems , under the condition (l-2), the 
set D (t) is compact, convex and depends continuously on t. Using the method Theorem 1 of /l/, 
we can establish that when the condition of local controllability of system (1.1) holds the 
set D (t) has an open neighbourhood E containing the point z = 0. In addition, the set D (t) is 
connected and D (tJ C D (Q, if l,,<t?. Estimates for such sets are obtained in /9/. 

Let D, be the union of all sets D(t) for t( 00. We shall show that for a Hamiltonian 
control system 

q' = aH (q, p)l+, P’ = ,aH(q, p)l@ + F (q, P) u, (q, P) E R?” (3.1) 

satisfying the demands of Sect.1, the set D, contains the region 52, (Sect-l). 
If system (3.1) can be stabilized by a continuous admissible control u = u, and MnS&,= 

0, then the truth of the assertion is obvious. 
Let M n Q,# 0. We shall assume that r = Q,\D,#O. Let us consider a sequence of 

integral manifolds Z(h) of the system (3.1) (uEO) corresponding to the energy integrals 
H(q,p) = k, H (O,O)= 0 as h+O,(h> 0) and containing the points of the set I'. Since an 
open neighbourhood EcD, exists, the inequality infh = h,>O must hold. 

Let us choose a sequence of points x*=1(h) n r converging to the point x1 E Z(h,) as 
IL+ h,. Since replacing the stabilizing control u = u, by the control u = -ue causes 
the phase points, except for the points belonging to the manifold M, to move towards the 
boundary of the region 9, intersecting the surface Z(h,) at the angles different from zero, 
it follows that x,E nf. 

The point x,cannot belong to the set r, since when u = 0, it must leave the set M after 
a finite period of time (since M contains no whole trajectories) and arrive, after a finite 
period of time, at the point xn of the surface Z &,)+&rough which the trajectory passes, inter- 
secting the surface Z(h,) without touching when u = -uC. As the solutions depend on the 
initial conditions in a continuous manner, a neighbourhood a of the point XH exists in which 
the trajectory intersects when u = -ucr the integral surfaces, without touching. 

Since x,is the tangent point of the set r, it follows that for any number c>O a suf- 
ficiently small S>O exists for which the integral manifold Z(h, + 6) contains the point 
Xb E r, ) ra- rb I< s. Clearly, the trajectory y passing through the pointzb belongs completely 
to the set r when UE 0. Since the solutions depend continuously on the initial condi- 
tions (when u = o), it follows that for sufficiently small e the trajectory must intersect 
the neighbourhood a. Therefore, the phase flux of system(3.1)) when u = -u,, transfers some 
points of the set D, to some points of the trajectory y, which contradicts the initial 
assumption. Therefore the set r is empty and QoCD,. 

(We have, by analogy, Q* C D,.) for Sect.2). 
The result obtained can be used, in particular, to transfer a phase point from one stable 

position of equilibrium to another stable or unstable position of equilibrium, provided that 
the correpsonding boundaries of the regions Q, have a common point at which the condition 
of local controllability holds. Such conditions are satisfied e.g. in the problem of the 
optimal reorientiation of a satellite /lo/. 

Let us consider one more example. We know /ll/ thatagyroscopic pendulum can be stabil- 
ized in the upper unstable position of equilibrium by a single control momentum directed along 
the axis of rotation of the Cardan frame. It can be verified that there the region C&, contain- 
ing the lower stable postion of equilibrium of a gyroscopic pendulum is adjacent to the un- 
stable upper position of equilibrium in which the condition of local controllability is satis- 
fied. Consequently, the gyroscopic pendulum can be transferred from any point of the region 
R, and in particular from the lower position of equilibrium, to the upper position of 

equilibrium by means of an admissible control in the least possible time. 

The author thanks V.A. Samsonov for discussing the paper. 
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