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A METHOD OF ESTIMATING THE DCMAIN OF CONTROLLABILITY
IN NON-LINEAR SYSTEMS™

A.P. BLINOV

An estimate of the domain of controllability is given for a class of non-
linear control systems. The domain is the region of phase space from every
point of which the system can be taken to any other point by means of an
admissible control.

1. consider the differential equations of perturbed motion of a control system (written
in vector notation)

=0 u), O=C (R X Q) ¢ R" (1.1)

Here u is the control vector acting from the bounding set Q< Q, for which the vector
v =0 is an internal point and R", R™ are real n- and m~dimensional spaces respectively
(m < n).

Following /1/ we shall define the domain of zero contrellability as the set of initial
points z,& R"™ from which system (1.1) can be brought to the point x = 0 by means of the
bounded measurable controls u ()&= @ defined in some finite time interval.

We know /1/ that if a positive definite Lyapunov function V (z) and an m-dimensional vector
function ug(r) exists for the control system in R"™ of class (%, such that

lim V (z)=oc0; Y. 2= ®;(a,up (2)) <O, z0

Ix]-se0 i=1
®@0,00=0, (|-| is the length of the vector) and the condition, of local controllability
rank [B,AB,...,A™Bl=n, 0=Q, A=®,(0,0 (1.2)
B=a,(0,0

holds, then the domain of zerc controllability for system (l.1l) is identical with R".

Let us consider the case inwhich a constructive estimate can be given for the domain of
zexo controllability.

Let a Lyapunov function V (z) be known for system (1.l) without control, positive definite
in the region Q,C R", 0 & Q,, the time derivative of which

n
. 1 oV
Vo =E—5:(D,(z,0)’
i=1
by virtue of (1.1) (with wu==0), is a non-positive function in Q,.
We take a function U (u) = C'(Q,), positive definite in ue&E Q, e.g. a positive definite
quadratic form. We write the expression

Frzuw= Y 5-[0uew) — 0z 0]+ U () (1.3)

i==]

are separate it into m components.

Fr(z,u)= E;F" (z,u)
Fy@mu)= Y 2010 u)— 0;(z, 0] + Uy (@)
=1 7

m
Ux(@m)>0; ’?_‘,U,,(u)=U(u); k=1,....m;, ni+4 .. +ay=n
-]

Let us separate from the functions Fy (z, u) the cofactors of the form Fr(u), provided
that they exist, i.e. let us write Fy (z,u) in the form Fy (z, u) = Fy* (z, u) Fi" (u)and consider
the system of equations

Fi(z, uy=0, k=1,...,m (1.4)

The vector function F* (z,u) is defined and continuously -differentiable in the region

*prikl.Matem.Mekhan.,48,4,593-600,1984 419



420

R™ x Q, and F*(0,0) =0,

We shall assume that the functional determinant |[dF* (z, u)/du; | is non-zero at every
point {(x, ¥} of the open set §( R"™ X {, containing the point =z =20, u = 0.

Let R,, R, be two positive numbers such that when |z | <R, |u!|<{AR, the point {z, u)
belongs to the open set S and the following inequality holds for it:

I;u—j-gk(x,u)‘Q%, kyj=1,....m (1.5)

Here a is any number from the interval (0, 1), g (z,u) is the coordinate of the vector
function g {z, u)
) gz, u) =u— BF* (z,u) (1.6)

and B is a matrix of the coefficients by, = 9F* (0, 0)/duy.

Then it follows from the theorem on the implicit function /2/ that a continuous and
unique solution u = u, (2), u, (0) =0 of the equation F* (r,u) =0 exists in the open set Q,
defined by the inequality |z |<<R, < R, and

jg(z.0) —g (0,0 <1 —a) Ry (1.7

{Under the assumption used a number R, must exist and can be computed.)
Some arbitrariness in choosing the function U (u) and in splitting the expression Fy(z, u)
into its terms can be utilized for determining the control u,(z) in the easiest possible way.
For example, if the functions ®; (z, u) can be written in the form

m m
D (z, 2y =i (z) + ’_21 @y (z)u; + . 4?_: . Dy (x) i (1.8)
then, assuming that
U (u) = 2 akjukuj
k, j=1

we obtain

G\ o O /D o
R 3 @ : R 4 .
Fr{z,u)= E(Eﬁwﬁ (3‘)> u; + 2‘ (E == Du; (2) + &k5> Uylt;
Jep d=1 K, j=1 el
Therefore terms of the type Fi* (x,#) and equations (l.4) are cbtained here guite naturally
n V m n a‘
R4 A 4
L?;mij(x)’*"g( L;;(Dikj(x)+ﬁkj)uk=0
-1 f=1 =1

Thus in the case in gquestiocn, the problem of determining the control reduces to that of
solving a system of linear equatioms.

From the construction of the control u = uc(xr) it is clear that it will stabilize the
unperturbed motion z =0 of the system (l.l), provided that the manifold M C R"™ defined
by the expression V| {z) — U/ (uc(z)) = 0 does not, according to the Barbashin-Krasovskii theorem,
contain complete trajectories of system (1.1).

Let the limiting set Q depend on z and be defined by the expression

Q@) = { uy | gy BT C (R, 0< u* = const < ug; (£) < (1.9)
u** = const, j = 1, ..., m}
1f @\ Q= 0, then we define the controls thus

Uo; (2} sign ug; (x) | Ue; (T} ]| 2> uo;(2)

ey (2) | s ()| < oy (2); (Hers -+ -+ Uom) = 1) (10

u5=u,-°(x)={

Since the controls u;° (z) are continuous, it follows that the derivative V', by virtue of
the system (1.l), will be defined in @, when Uu; = u,°(z). Let every cne of the sums

n
zk=22-§}"7a>j(x.u), k=1,...,m
2

Jual
be able to change its sign for fixed « & §; only when all controls entering I, change their

signs simultaneously. Then the derivative V', by virtue of (1.1), will vanish when u; = u;° {z)
only when z& M.

Consequently, system (1.l) can be stabilised by bounded controls belonging to the set @ (z).
i.e. the region Q, lies in the domain of zero controllability of (l.l). Clearly, in the case
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(1.8) Q, =8,

Note that the use of the well~known Lyapunov function to construct the optimal stabilizing
controls for system (l1.1) was suggested earlier in /3, 4/ for the case when the functions
@; (z, u) are polynomials of first and second degree with respect to the controls.

In some cases the proof of stabilizability of the unperturbed motions of system (1l.1) in
the region , can be simplified by introducing a new control vector v connected with the
initial control vector u by the relation v = v (u), single-valued and continuous in the neigh-
bourhoods (,.Q, of the points uw =0, v =0, under which the right-hand side of the system
becomes simpler, e.g. becomes linear with respect to the new controls, i.e.

@; (2, u (V) =Dy; (7) + 2 @ij(x)v;, i=1,....n (1.11)
J=l

We shall illustrate this by an example. The problem of optimal stabilization of the
stationary motion of a satellite about its centre of mass was studied in /5/. The satellite
was situated at the triangular libration point of the system of two bodies, and the stabiliza-
tion was carried out by varying the moments of inertia of the satellite. The right-hand side
of the equations of perturbed motion of such a control system has the form (1.11).

The stationary motion of the satellite, stable in the region of librational motion @, is
stabiliized by the controls %(j==1,2,3) with or without constraints of the type (1.9). The
controls v; in this problem are functions of the displacements u; of the centres of mass of the
displaced massive bars, and have the form

v =——__1- ,,__'_"*__A__"’_:__&' W .‘4";_0_0 1.12
! wy By * T*T T, A TG BT, T A+ C, (1.12)

where
wy = Bo + Auy + hgug + myuy® + mauy®
wy = A¢ — By + Ay — Agug -+ mau® — mgug®
wy = Ay — Cy — Mu; + Agug — mau,® -+ maug®

wg = Ao + Co + Muy + 2hguy + Agug + myu,® -+ 2mauy?® + mgug®

and Ag, By, Co. Ay, My, Mg, my, my, my are constant positive parameters of the problem (B, > Gy > A,).

To estimate the regions @, and Q,we shall use the expressions (1.5), (1.6), (1.7) in which
the functions F* (z,u), g(z,u) are replaced by the corresponding functions F (v, u), g(r,u) with
coordinates

FJ. (v, u) = §— v € (v, u)=u,— <Bj. F (v, u)>

3
£;(0,0) =0, g].(u,O):kle].kvk, ;=123

Here B; = (B;, Bj, Bj). By are elements of the matrix B-!, <., .> is the scalar product of
the vectors and {; are the corresponding right-hand sides of expressions (1.12).

Since the derivatives dgx (v, v)/du; are smooth, depend on the function u only and vanish
when u =0, after passing from the inequalities of the type (1.5) to equalities (at fixed a):
we obtain equations of the surfaces bounding the region @,. Apart from these surfaces, the
region ¢y is also bounded by the surface representing the boundaries of the domain of defini-
tion of Fj(v,u) and described by the equations w,(u) =U, ws(x) =0. Therefore the guantity R,
represents here the minimum distance separating the point « =0 from these surfaces. Inequal-
ities (1.7) have the form

3
]k 1th_uk|<(1~a)1ru, j=1,23

Thus we find that the region Q,is bounded by the surfaces

3
S Byve=t(1—a)R, j=1.2,3
k=1

If Ryp 1s the minimum distance from these surfaces to the point v = 0, then satisfying the
condition u** < ?4Re guarantees the solution of the problem of stabilizing the stationary
motion of the satellite by means of controls u;, u, us with constraints of the type (1.9).

Returning now to the general case, we shall assume that the estimate of the region Q,
for the control system (1.1l) is known.

If condition (1.2) also holds for such a system, then according to Theorem 1 of /1l/ its
domain of zero controllability is open in R". Consequently, any point of the region Q, can be
transported by an admissible control, i.e. a measurable function u (f) & Q (z), to the origin
of coordinates over a finite period of time.

Note the following properties of the control system (1.1), (1.2), (1.9). The set Q(z)is
closed, bounded, and by virtue of the continuity of the bounding functions ug (r) semicontinu-
ous from above with respect to the inclusion (in z), i.e. the following assertion holds:
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(V= R") (Ve >0) (8 =8 (e, 2) >0 (V2', [z — 2’ | < &) : Q0 (x') = Q. (2)

Here (. (z) — e denotes the neighbourhood of the set Q (x).

When the vector u traverses the set Q (z), the vector function @ (z,u) traverses the set
R (z) which is also semicontinuous from above with respect to the inclusion.

Moreover, in the case of a linear dependence of @ (x,u) on u the set R (r) is convex (for
any z & R"Y).

In addition to the properties listed above for the system (1.1), let the set R () be
convex and let the following inequality hold /6/:

z, D (z,u)) Le(lz|*+1), c¢=const, uesQ&)

Then the condition of Theorem 1 of /6/ will hold for every point z& R". The theorem
implies that for every point of the region , an admissible control exists which transfers
this point to the origin of coordinates in the shortest possible time.

2. Let us now consider the problem of estimating the region of zero controllability for
an autonomous control system written in theform of the Lagrange equations

m
d T oT ol |
dteg” T oq, . dq, EF”' (@) (2.1)
j=1
without assuming that the stationary motion ¢, =0, ¢ =0, (i=1,...,n) is stable when u;=

0(G=1,...m.
Let the potential energy of the system (2.1) have a maximum equal to zero II(0) =0, when
g =0, with bounding functions independent of the generalized velocities, i.e. when we have
in conditions (1.9} uy; = ugy (g).
We shall write the controls in the form

w=v;+wp v <pug(g pes(0,1) (2.2)
m
A I .
Epij(q)wj=(1+p).jq_, i=1,...,n
j=1 t

and assume that equations (2.2) are compatible and have the solutions w; = w;* (g), w;* (0) =0
in the region Gp containing the point ¢ =0 of the configurational space G. We define
the surfaces ;" 9,7 in the region Gr by the equations ==(1 — p)uy; (g} = w;* (¢) respectively.
(If the latter equations have no solutions for some values of j, there are no corresponding
surfaces) .

The region G, containing the point ¢ = 0 and bounded by the surfaces vit, v;,~ and the
boundary of Gp, is obviously non-empty for sufficiently small w. A value p = p* exists on
the bounded set p & (0,1), for which the region G, will contain the closed surface of
constant level of the function (—u*I) defined by the equation —p*II = II* [I* = const > 0,
farthest from the origin of coordinates.

Let us write the equations corresponding to the control system (2.1), after passing to
the new controls

m
an
==+ YRy, 23)

j=1

We find that for any initial perturbations belonging to the region Q* of phase space
R™ bounded by the surface of integral manifold of the system (2.3), when u=0 and

H{.9)=T(q ¢) — pll (g) = O*

the unperturbed motion ¢ =0, p =0 is stable and can be stabilized by a continuous bounded
control. Consequently, under the additional assumptions given in Sect.l, the region Q* can
serve as an estimate for the region of zero controllability.

Note that the addition to the system (2.1) of the non-potential forces which vanish at
the origin of coordinates, does not cause any difficulties in principle in determining the
region Q¥*,

The homogeneous walk of a plane non-linear model of a walking device along a horizontal
plane, is described /7/ by a system of five differential equations of the form (2.3). The
problem of bringing the device to the upper unstable equilibrium position in the least time
may be of interest. Since the dimension of the control vector is equal here to the number of
equations, it follows that the system of the type (2.2) is consistent.

In the linear approximation the equations of motion of a walking device near its upper
position of unstable equilibrium have the form

5 [
j§1 ai]'qj" - igl bijqi + u, b:j = bji‘ hvi=1,...,5 (2.4)

Since the dimensions of the control vector is equal to the number of equations, the



423

conditions of controllability of system (2.4) are satisfied. (In the case of a scalar control
the conditions of controllability of the system of the form (2.4) were obtained in /8/). Other
conditions for the region Q* (Sect.l) to exist are also satisfied.

3. Let us now consider the problem of estimating the region of total controllability
of system (l1.1), i.e. of a set such that a phase point can be taken from any point of the set,
by means of an admissible control, to any point of this set in a finite time.

Let D (t) be a set of points z & R® intowhich the phase point can be taken from its initial
position =0 at ¢t =0, using an admissible control, in a time ¢t >0, i.e. let D (I) be
the region of zero attainability /1/.

It was shown in /1/ that, for the linear control systems, under the condition (1.2), the
set D (t) is compact, convex and depends continuously on t. Using the method Theorem 1 of /1/,
we can establish that when the condition of local controllability of system (1.1) folds the
set D (1) has an open neighbourhood E containing the point r = (. In addition, the set D (f) is
connected and D (t,) © D (3,), if t,<({,. Estimates for such sets are obtained in /9/.

Let D, be the union of all sets D (t) for << oo. We shall show that for a Hamiltonian
control system

g = 0H (g, p)/dp, p' = —8H (g, p)/og + F (g, p) u, (g, p) E R*™ (3.1)

satisfying the demands of Sect.l, the set D, contains the region £, (Sect.l).

If system (3.1) can be stabilized by a continuous admissible control u = u, and M=
0, then the truth of the assertion is obvious.

Let M [ Q,7 0. We shall assume that I = Q,\ D. % 0. Let us consider a sequence of
integral manifolds [ (k) of the system (3.1) (u=0) corresponding to the energy integrals
Hq,p)=h, H@O,0 =0 as A—0, (h >0) and containing the points of the set I. Since an
open neighbourhood E C D« exists, the inequality infhk =k, >0 must hold.

Let us choose a sequence of points ax,& 1 (k) () T converging to the point =z, &I (h,) as
b hy. Since replacing the stabilizing control u = u, by the control u = —u, causes
the phase points, except for the points belonging to the manifold M, to move towards the
boundary of the region §, intersecting the surface I (h,) at the angles different from zero,
it follows that z, & M.

The point z,cannot belong to the set ', since when u=0, it must leave the set M after
a finite period of time (since M contains no whole trajectories) and arrive, after a finite
period of time, at the point zy of the surface [ (h,)through which the trajectory passes, inter-

secting the surface [ (h,) without touching when u = —u,. As the solutions depend on the
initial conditions in a continuous manner, a neighbourhood ¢ of the point zy exists in which
the trajectory intersects when u = —u,, the integral surfaces, without touching.

Since z,is the tangent point of the set I, it follows that for any number &>0 a suf-
ficiently small &6>>0 exists for which the integral manifold [ (h, + 8) contains the point
zse=T, |zg— x5 | << e« Clearly, the trajectory ¥ passing through the point Zs belongs completely

to the set I when wu=0. Since the solutions depend continuously on the initial condi-
tions (when wu==0), it follows that for sufficiently small & the trajectory must intersect
the neighbourhood ¢@. Therefore, the phase flux of system(3.l), when u = ~—u,, transfers some

points of the set D, to some points of the trajectory y, which contradicts the initial
assumption. Therefore the set I is empty and Qi & De.

(We have, by analogy, Q* & D.) for Sect.2).

The result obtained can be used, in particular, to transfer a phase point from one stable
position of eguilibrium to another stable or unstable position of equilibrium, provided that
the correpsonding boundaries of the regions Q, have a common point at which the condition
of local controllability holds. Such conditions are satisfied e.g. in the problem of the
optimal reorientiation of a satellite /10/.

Let us consider one more example. We know /ll/ that a gyroscopic pendulum can be stabil-
ized in the upper unstable position of equilibrium by a single control momentum directed along
the axis of rotation of the Cardan frame. It can be verified that there the region Q, contain-
ing the lower stable postion of equilibrium of a gyroscopic pendulum is adjacent to the un-
stable upper position of equilibrium in which the condition of local controllability is satis-
fied. Consequently, the gyroscopic pendulum can be transferred from any point of the region

Q, and in particular from the lower position of eguilibrium, to the upper position of
equilibrium by means of an admissible control in the least possible time.

The author thanks V.A. Samsonov for discussing the paper.
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